STOCK MARKET UPDATE

Ticker

6/recent/ticker-posts

POTENTIAL DRUG TARGET SITES OF HIV IDENTIFIED BY BIOINFORMATICS & INTELLIGENT MACHINE LEARNING TECHNIQUES

Abstract ;
Recent findings in identification of potential drug target sites for HIV by HIV-1 and HIV-2 structural and regulatory proteins, HIV miRNA/RNAi based drug identification, siRNA is found to be therapeutic agents, Subcellular based drug identification, membrane protein based and many more are identified & classified by using Bioinformatics and machine learning approaches. Discovering of potential target sites include complete assessment of experimental, mechanistic and pharmacological studies not only theoretical but molecular druggability assessment is also important, it also includes opportunity of suitability of disease, like HIV/AIDS. Here in this article, a set of potential drug target sites are focussed to be summarized which are identified by machine learning techniques with great accuracy. Keywords: Therapeutics, target, Disease, HIV/AIDS, Machine learning

INTRODUCTION: 
The human immunodeficiency virus (HIV) is a  lentivirus  (a  subgroup of retrovirus) that causes
HIV  infection  and  over  time  acquired immunodeficiency  syndrome  (AIDS).  The  second most
common infectious cause of death globally [1,2]. Since the first reported cases of AIDS and the
discovery of  HIV as its  cause in  the early  1980's,  researchers and  clinicians have  struggled  to
develop  and  administer  effective  therapeutics to  combat HIV/AIDS,  and the  production of  a
viable  vaccine  remains  an  unrealized  goal  [3].  The  difficulty  of  developing  effective  HIV
therapeutics  and  vaccines  is  due  largely  to  the  extraordinary  mutation  rate  of  HIV,  which
enables the virus to rapidly evade the selective pressures imposed by antiretroviral medications
and  potential  vaccines  by  generating  a  large  and  genetically  diverse  population  through
mutagenesis  [4].  A  comprehensive  knowledge  of  the  genetic  diversity  characteristic  of  HIV
populations  in  infected individuals  - what  have  been termed  viral  quasispecies -  is therefore
essential for the discovery and delivery of effective HIV medications and vaccines.  Both HIV-1
and HIV-2 are believed to  have  originated in non-human primates  in  West-central Africa, and
are  believed  to have  transferred  to humans (a  process  known  as zoonosis)  in the  early 20th
century[5,6].  HIV-1  is thought  to have  jumped the  species  barrier on  at  least three  separate
occasions, giving rise to the three groups of the virus, M, N, and O. The RNA genome consists of
at least seven structural landmarks (LTR, TAR, RRE, PE, SLIP, CRS, and INS), and nine genes (gag,
pol, and env, tat, rev, nef, vif, vpr, vpu, and sometimes a tenth tev, which is a fusion of tat, env
and rev),  encoding 19  proteins.  Three of these genes,  gag, pol, and  env, contain information
needed to make the structural proteins for new virus particles [7]. For example, env codes for a
protein called gp160 that is cut in two by a cellular protease to form gp120 and gp41. The six
remaining  genes, tat,  rev, nef,  vif, vpr,  and vpu  (or vpx  in  the  case  of HIV-2),  are regulatory
genes for  proteins that control  the ability  of HIV  to  infect cells,  produce new  copies of  virus
(replicate), or cause disease [8]. The complete genomic structure is Using bioinformatics approaches and machine learning techniques, the target sites for HIV are
identified and classified.  Although vast majority of  targets  being currently  addressed for drug
discovery are proteins, in the near future nucleic acids could gain more and more importance as
drug  targets  [9,10]  drug targets.  The overall  drug  target  families  are recently  been analysed
applying the DRUGBANK database [11]. It is the most important source of information for drugs
and  drug  targets.  Cutting  edge  chemical  approaches  or  chemoinformatics  approaches  have 


identified novel mechanisms of drug molecule interaction and  suitability of  drug  in treatment
process.  A  druggable  target  is  a  protein,  peptide  or  nucleic  acid  with  activity  that  can  be
modulated by a drug, which can consist of a small molecular weight e.g., enzymes, receptors,
protein-protein  interface,  Nucleic  acid i.e.  RNA. And  Biologics i.e.  extracellular  proteins, cell-
surface receptors etc. A target is said to be good because of following properties:
Properties of an ideal drug target:
 Target  is  disease-modifying and/or has  a proven function  in the pathophysiology  of  a
disease.  Modulation of the target is less important under physiological conditions or in
other diseases.  If the druggability is not obvious (e.g. as for kinases) a 3D-structure for
the target protein or a close homolog should be available for a druggability assessment.
 Target  has  a  favourable  ‘assay  ability’  enabling  high  throughput  screening.  Target
expression is not uniformly distributed throughout the body.
 A target/disease-specific  biomarker  exists to monitor therapeutic  efficacy.   Favourable
prediction of potential side effects according to phenotype data (e.g. in knockout. mice
or genetic mutation databases). 
 Target has a favourable IP (intraperitoneal or interpharengeal) situation i.e. a situation
where no competitors on target, freedom to operate in a target at any way [12].
The approaches of  drug trial of any  disease  by machine  learning and computational methods
help to develop  a  model for wet lab with low  cost and high efficiency. The schema of this has
been shown as:

Understanding of Disease  Identification of molecular drug target


                         Characterization of molecular drug target           interaction of drug with target site                      


Clinical data if existing
                                             Expression at molecular level             functional pathway analysis
                                                            

                                                          
                                                                 Utilize data phenotypically
                                                 

                                                               Target modulation
Control mechanism with
Suitable model development
By machine learning techniques 
                                                          Host disease interaction w.r.t target identification


                                                                 Effect on biomarkers

         
                                                               Insilico drug trial on model

                                    If above steps successful

                                                       Apply to animal model for clinical trials

           Figure 2:  Schematic representation of drug finding opportunities to clinical drug trial.

The above schema clearly presents the steps followed during  in-silico  model development for
drug  trial,  if  anyhow  successfully  not  treated  with  animal  model  than  again  back  to
characterization  of  molecular  drug  target  is  necessary.  And  remaining  steps  are  followed
accordingly. This will provide low cost, high efficient approach for clinical drug trials.

In  this  present  review  article  potential  drug  target  sites  for  HIV  are  tried  to  summarize  for
future identification and characterization of HIV drug delivery. They are discussed as: [A] HIV1and HIV2 structural and functional proteins: The structural and functional proteins of
HIV are also found to be potential drug target sites on the basis of their amino acid composition
[12].  Knowledge  of  protein  structure  plays  a  crucial  role  in  analysis  of  protein  function,
simulation of protein ligand interaction, rational drug discovery and in many other applications
[49].  The HIV1  lead  to faster  disease  progression  as  compared  to  HIV2.  HIV1  and  HIV2  are
classified  using  amino  acid  composition  of  structural  and  regulatory  proteins  which  are
classified  by  support  vector  machines  [13].  According  to  that  amino  acid  composition  of
structural proteins of HIV-1 and HIV-2 are found similar. There are  variance  in only regulatory
proteins that is vpu and vpx which are found to be uniquely in HIV-1 and HIV-2 respectively. In
this review it is emphasized that the difference between vpu vs vpx to be major potential drug
targeting proteins for HIV.
Viral protein U (Vpu) is a lentiviral viroporin encoded by human immunodeficiency virus type 1
(HIV-1) and some  simian immunodeficiency virus (SIV) strains.  This small protein of  81  amino
acids contains a single transmembrane domain that allows for supramolecular organization via
homoligomerization  or  interaction  with  other  proteins.  The  topology  and  trafficking  of  Vpu
through  subcellular  compartments result  in pleiotropic  effects  in  host  cells. Notwithstanding
the high  variability of its amino  acid sequence, the  functionality  of   Vpu is  well  conserved in
pandemic  virus isolates  The regulation  of  cellular  physiology  by  Vpu  and  the  validity  of  this
viroporin as a therapeutic target are also discussed. It is possible that HIV-1 regulatory proteins
produced from multiply spliced transcripts as a result of basal transcription in latently infected
cells might alter several pathways to enhance the homing, spreading, and survival of infected
lymphocytes, thus contributing to the establishment and maintenance of viral latency. 
HIV-1  Infection  Ensures  a  Balance  between  Cell  Survival  and  Apoptosis—HIV-1-induced
apoptosis plays an important role in the pathogenesis of AIDS. Several viral proteins contribute
to the induction of apoptosis including  Vpr, Vpu, and Tat [19-22]. Although a growing body of
evidence suggests that the HIV-1 accessory proteins, namely Nef and Vpr, could be involved in
depletion of CD4+ and non-CD4+ cells and in tissue atrophy, they also have been implicated in
delaying the death of HIV-1-infected cells [23]. These apparently contradictory observations can
be explained by the fact that cell depletion is likely to be predominantly a bystander effect by
extracellular or cell surface-associated components of HIV-infected cells [24,25]. 

[B]  miRNA/RNAi  based  drug  identification: MicroRNAs  (miRNA’s)  are  small  RNAs  of  21–25
nucleotides that specifically regulate cellular gene expression at the post-transcriptional  level.
miRNA’s  are  derived  from  the  maturation  by  cellular  RNases  III  of  imperfect  stem  loop
structures of ~ 70 nucleotides. Correct identification of miRNA that regulate cellular processes
and  impact  economically  important  traits  for  drug.  This  requires  better  understanding  of
characteristics  of  miRNA’s  which  can  be  done  by  understanding  the  differences  between
miRNA’s of different  organisms  [14]. They have applications  in  forensic science where miRNA
belonging  to  organism  can  be  identified  and  as  the  classification  is  extended  further
incorporating all organisms in  the mirBASE registry [50].  But from literature survey it appears
that  no  attempt  has  been  made  to  develop  computational  approaches  for  classification  of
plant, animal and  HIV  miRNA’s [15], Thus there  is  a  need to develop newer algorithms  which
are robust, fast and economical considering the financial and time constraint which it poses on
existing lab techniques.  
siRNAs are also being evaluated as potential therapeutic agents. A number of publications have
shown  that  siRNAs  can  inhibit  the  replication  of  HIV  [44]  and  Hepatitis  B  [45].The  most
significant hurdle for the  therapeutic use of siRNA is delivery:  how can siRNAs be targeted to
specific cells? Delivery of nucleic acids to specific organs, tissues and cells will require significant
advances in nucleic acid chemistries, including possible novel conjugations and/or formulations
to specifically target certain cells. The first indication for siRNA to reach clinical trials is likely to
target the  VEGF  receptor for  wet acute  macular  degeneration. Other indications that  require
systemic applications of siRNA will require new formulations to ensure targeting of the siRNA to
the desired organ and tissue. Two  other  hurdles  for  siRNA  therapeutics  relate  to  challenges  faced  by  all  nucleic  acid
therapeutics: drug stability and manufacturability. These modifications are the result of years of
research  for  antisense  therapeutics,  ribozyme  therapeutics  and  aptamer  technologies,
providing  a  head  start  for  siRNA  therapeutics.  If  hurdles  are  resolved  and  clinical  trials  are
successful  then  these  new  technologies  will  likely  be  required  to  support  a  major
pharmaceutical product for mankind [16].

[C] Subcellular localization based Drug identification: Amino acids are critical to life, and have a
variety of roles in metabolism. One particularly important  function is as the building blocks of
proteins,  which  are  linear  chains  of  amino  acids.  Every protein  is chemically  defined by  this
primary structure, its amino  acids  can be linked together in  varying  sequences  to form a vast
variety of proteins [16]. Due to their importance a machine learning simulation model is being
developed  to  classify  and  predict  subcellular  localization  of  HIV  apoptosis  proteins  [17].
Commercially  available  softwares  i.e.  EukMPloc,  Subloc,  VirusPloc  are  ued  to  predict  the
subcellular location of HIV apoptosis proteins in the given study. Comparative Analysis of these
softwares  with support  vector machines  shows which  one is  better  for  particular analysis  of
available data. As studies done by Dubey et al [17]:


Subcellular 
Localization  of
proteins
EukMPloc
SubLoc
Virusploc
No.  of
proteins
accuracy
No.  of
Proteins
accuracy
No.  of
proteins
Accuracy
Plasma
membrane
115
99.900
165
86
-
-
Cytoplasm
7
98.889
7
82.9167
112
94.382
Nucleus
91
96.667
94
81.3187
29
94.953
Mitochondria
21
99.1304
1
90
18
99.2308
Secreted
proteins
22
98.113
-
-
-
-
Cytoskeleton
8
-
-
-
-
-
Extracellular
6
96.2104
1
87.9167
94
98.889
                                 Table 1. Comparative analysis of various softwares with their accuracies

Eukaryotic Mploc is  most  suited for finding  subcellular localizations in Plasma  membrane  and
cytoplasm. The site of Subcellular localization can be used to predict the HIV progression i.e. in
mitochondria with great number of dying cells  suggest infected person is in IIIrd or IVth stage of
HIV, whereas  subcellular localization in  plasma membrane,  cytoplasm  and extracellular  space
shows infected person is in Ist or IInd stages[17]. 

[D]  Membrane  Protein  based  drug  identification:  Membrane  proteins  are  attractive  drug
targets  but  determination  of  membrane  protein  structures  or  topologies  by  experimental
methods  is  expensive  and  time  consuming.  So  there  is  a  need  of  effective  computational
methods  in  predicting  the  membrane  protein  types  or  transmembrane  helices  can  provide
useful  information  for  large  amount  of  protein  sequences  [18].  HIV  protein  sequences  from
Uniprot  database  are collected  and bioinformatics  and  machine  learning  techniques  help  to
identify and classify proteins into membrane proteins and soluble proteins [18].WEKA software
package is used  for  classification of membrane and  soluble  proteins  [51]. The Support  Vector
Machine  based  classification of HIV  membrane  proteins  and soluble proteins  on the  basis of
amino acid based composition gives 97% accuracy [18, 26]. Further analysis of this study shows
gp120,gp41,  gag,  pol,  gag-pol  polyprotein  are  the  most  classified  HIV  membrane  proteins.
These may prove better opportunity for targeted drug delivery.
             Artificial intelligence-based techniques such as SVM and the neural network and WEKA
classifiers  are  elegant  approaches  for  the  extraction  of  complex  patterns  from  biological
sequence data. 

 [E]Motif /Domain based prediction: The domain based classification of HIV-1, HIV-2 and there
subtypes  [26]  would  help in  the development  of  novel approaches  to wet  lab techniques  in
devising  novel  drugs  and  therapeutics.  The  correlation  of  protein  domain  with  its  structure
explored  in [26]  can  be useful  to  obtain  better insights  about  these  proteins.  The  accuracy
prediction of SBASE proves better in predicting protein domains in dataset given. It is definitely said that as more and more sequences are being updated in databases, the model developed is
further improved [26]. 

Domains
Function
RNA recognition motif
Bind single stranded RNA
K homology domain
Nucleic  acid  bindings  RNA  binding  and
recognition
Glycine rich domain
Nuclear localization, protein binding
Arginine-glycine –glycine box
RNA binding
Proline rich domain
Protein interaction domain
Zinc finger domain
DNA binding
Asp-glu rich acidic domain
DNA/RNA mimicry

                            Table1. Domains identified by commercially available software’s.


According to Dubey A, it was showed that Zinc finger domain and asp-glu rich acidic domain are
mostly observed in all sub-types of HIV-1 being a potential drug target site.

[F] G-protein coupled receptors (GPCR) based drug designing:  GPCR crystal structures used for
structure-based drug  design (SBDD)  based on three  dimensional (3D)  protein structures  [27]. 
The  impact  of  GPCR  crystal  structures  on  SBDD  has  been  immediate  and  has  led  to  the
discovery  of  novel  ligands  for  multiple  GPCRs.  The  crystal  structures  have  also  provided
opportunities  for  homology  modelling  to identify  novel  GPCR  target  site  for  HIV  and  CXCR4
proteins  [27, 28].  These  GPCR  play an  important  role in  evolutionary  relationships  to other
species  for  interpreting  naturally  occurring  receptor  mutation  in  patients  and  for  guiding
structural relevance of individual GPCRs to other associated diseases.  Signal pathway analysis
can be done through this study which will be helpful  in  GPCR  protein  –protein interaction for
making right path for drug delivery.


[G]  Residue  based  drug  designing:  Protease can  be used  for  drug  design  because  it has  an
extremely  elegant,  economical  structure,  made  up  largely  of  b-strands  and  preserve  perfect
two-fold  symmetry  if  no  substrate  or  inhibitor  is  bound  [29].    Structure  and  function  are
intimately related. Hence X-ray Crystallography is the only method for determining the absolute
configuration of a  protein molecule of HIV.  Detailed  classification of alpha, beta  and  residues
are identified by machine learning techniques are studied by Dubey et al [30]. Hence this can be
further  used  in  computer  aided  drug  discovery,  structural  identification  and  comparison  of
functional sites. Protein interaction of targeted residues with drug molecule proves the better
sites for HIV.

[H] Target related Biomarkers based drug designing: 
 There  are  two  major  types  of  biomarkers:  biomarkers  of  exposure,  which  are  used  in  risk
prediction,  and  biomarkers  of  disease,  which  are  used  in  screening,  and  as  diagnosis  and
monitoring of disease prediction [53]. Biomarkers used in risk prediction are CD4+ T cell count
and  increase  of  viral  load  screening  shows  the  stage  of  HIV  [48]. Biomarkers  of disease  are
interferon γ, RANTES, MIP-1β, d-dimer, IP-10, Fibrinogen and others [53]. The immune system
produces  a milieu  of  cytokines  that  may  work  to  help or  hinder virus  growth  and  reservoir
establishment. Cytokines like Interferon γ induced protein 10, IFN γ, IL7, IL-15, IL-6, IL-12p40/70
works for  prediction of  future prediction of  viral  load and  disease  progression when  used as
biomarkers. Results  suggest  that  CD4+cells,  IL-10,  and  sometimes  P24  could  be  useful
biomarkers  for  diagnosis  of  HIV/AIDS  and  for  Individuals  that  screen  positive  regardless  of
whether or not they have AIDS. Also, treatment should be available for those  who screen HIV
positive  with  AIDS.  Machine  learning  techniques  are  used  to  describe  and  classify  HIV
biomarkers [48] and these are effective targeting drug for HIV/AIDS.


The  above  discussed  potential  targets,  or  combinations  of  the  multi-target  drugs  and  drug
combinations were collected from the existing database and literature. Multi target drugs were
obtained from Therapeutic target database TTD and clinical trials.gov database [21]. Followed
by literature and the developmental status will be collected. Drug combinations were obtained
from Drugs @FDA or PubMed [31, 32]. By combining the primary therapeutic target of all drugs
in a certain drug combination, target combination would be generated. The biochemical class,
structural fold, and pathway information of each target in a  specific  target combination were
also obtain from Uniprot /Swiss prot database [33], i.e. HIV1and HIV2 Sequences. Protein Data
Bank  (PDB)  structures  are  also  available  for  each  enzymes  of  HIV  also  mutant  variety  are
available for further drug related experiments. CATH, Gene 3D, and other databases like KEGG
are also functional to study enzymatic pathway. And effect of drug design on model in- silico is
es  classifier  is  a simple  probabilistic classifier  based  on applying
Bayes' theorem with strong (naive) independence assumptions. A more descriptive term for the
underlying probability model would be "independent feature model". In simple terms, a naive
Bayes  classifier assumes  that  the  presence  (or absence)  of  a  particular  feature of  a  class  is
unrelated to the presence (or absence) of any other feature, given the class variable [38,41]. 

Using Bayes' theorem, conditional probability can be written as
1
11
( ) ( , , | )
( | , , ) ( , , )
n
nn
p C p F F C
p C F F p F F

 
      (2.6)
Or in simple terms it may be written as
prior likelihood
posterior evidence




(vi) BAYES NET: It is based on Bayesian theorem.

(vii)  LOGISTIC:  In  statistics,  logistic  regression  or  logistic  model  is  used for  prediction  of  the
probability  of  occurrence of  an event  by fitting  data to  a  logit function  logistic curve.  It  is a
generalized linear model used for binomial regression. Like many forms of regression analysis, it
makes  use  of  several  predictor  variables  that  may  be  either  numerical  or  categorical.  For
example, the probability that a person has a heart attack within a specified time period might
be predicted from knowledge of the person's age, sex and body mass index. Logistic regression
is used extensively in  the  medical  and social sciences fields, as  well  as  marketing applications
such  as  prediction of  a  customer's propensity  to purchase  a product  or cease a  subscription
[39,40].

An explanation of logistic regression begins with an explanation of the logistic function, which,
like probabilities, always takes on values between zero and one:
1
() 11
z
zz
e
fz ee





Hence these are called intelligent machine learning techniques because Machine Learning is a
technique which  works  intelligently by using  some  complex algorithms  and  set of predefined
rules. It uses the past data to read the patterns and then based on the analysis it generates the
relevant data or performs the intended task abiding the defined rules and algorithms
DISCUSSION: An important aspect used to judge the validity of a given target depends  on the
indication of for which the target is considered. More importantly the requirements in terms of
safety and tolerability for such a drug in a preventive way are more challenging in diseases like
HIV/AIDS. It needs a careful evaluation whether a multiple target approach is to be preferred or
“one drug one target guidance needs to be followed [43].
The  above  discussed  potential  drug  target  sites  of  HIV  needs  to  prove  therapeutic  use.  The
contribution  of  a  pharmaceutical  company  to  the  value  chain  is  a  patentable  chemical
compound  that  becomes  a  drug  rather  than  the  target  itself.  As  many  targets  are  initially
identified in scientific literature, there is a need to build up  a  direct  relationship  between  the
degree of validation and the competition around a given target. So there is a need to working
together  of  scientific  community  and  pharmaceutical  companies  to  save  time  and  cost  in
achieving the target, simultaneously producing beneficial products for mankind. Knowledge of
subcellular localization  of a  protein can  be  significantly improving target identification  during
the  drug discovery  process.  As  secreted  proteins  and  plasma  membrane  proteins are  easily
accessible by drug molecules due  to  their localization in the extracellular space or on  the cell
surface. The study of hybrid model for classification of HIV1 and HIV2 proteins on the basis of
amino acid composition and dipeptide composition shows the interaction between these two.
These  prediction  results  help  to  find  the  dipeptide  motifs,  domain  interactions,  protein
interactions, protein folding, since it provides global information of a protein.
Structural  and  regulatory proteins  of HIV1  & II  have  been an active  area of  research.  Due  to
high  efficient  techniques  of  data  mining  or  machine  learning,  structural  classification  of  HIV
proteins/enzymes  can  be  done  with  fair  accuracy. Here  structural  classification  done  on  the
basis  of  alpha,  beta and  residues.  Such  approaches  can  develop  new  insights  for  structural
classification  of  HIV  proteins  to  find  drug  targets  and  protein  engineering  and  to  develop
databases. And any new protein engineered or find out can further be classified as the models
developed. The above model is useful for generating information which can be of great use in
prediction  of structure  and function  of  all  the enzyme  structures present  since  they are  key
drug targets. The protein structure belonging to a particular class will have functional domains, CONCLUDING REMARK
The present manuscript provides the point of view on potential drug target sites for HIV/AIDS. It
is  believed  that  these  intelligent  machine  learning  techniques  or  combination  of  these
approaches would help in thoroughly performing target validation for HIV/AIDS. Which should
help  to  reduce  attrition  rates  in  the  later  stages  of  drug  development.  Complementary
approaches, such as molecular barcoding, will also be required if we are to understand how the
mutant spectrum changes  temporally or spatially within  an infected host.  Finally,  future drug
and  vaccine  studies  will  need  to  be  carried  out  in  well-defined  animal  models,  as  subtle
differences can have a significant impact on experimental outcome. Despite these obstacles, it
is  observed  that  quasispecies  theory  will  soon  move  out  of  the  laboratory  and  begin  to
influence  the  control  and  treatment  of  HIV/AIDS.  As  new  therapeutics  are  identified  or
validated  the databases  are  further  improved  and  analysis can  be  done  for future  use.  The
potential  sites  discussed  so  far  in  this  review  will  also  play  an  important  role  in  Vaccine
development for HIV/AIDS, which is in infancy soon it will take boom with the help of machine
learning techniques. 
DR ANUBHA DUBEY INDEPENDENT RESEARCH INDIA
PHONE NO,9993210963
/https://www.facebook.com/Kanishk-103603547852455/
https://ashutoshdubey3489.wixsite.com/kanishksocialmedia

Social media is bold. 

Social media is young.

Social media raises questions.

 Social media is not satisfied with an answer.

Social media looks at the big picture.

 Social media is interested in every detail.

social media is curious.

 Social media is free.

Social media is irreplaceable.

But never irrelevant.

Social media is you.

(With input from news agency language)

 If you like this story, share it with a friend!  

We are a non-profit organization. Help us financially to keep our journalism free from government and corporate pressure.

Post a Comment

0 Comments

Custom Real-Time Chart Widget

'; (function() { var dsq = document.createElement('script'); dsq.type = 'text/javascript'; dsq.async = true; dsq.src = '//' + disqus_shortname + '.disqus.com/embed.js'; (document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq); })();

market stocks NSC